p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42.7C22, (C4×C8)⋊3C2, C4⋊C8⋊14C2, C4⋊C4.6C4, C8⋊C4⋊8C2, C2.6(C8○D4), C22⋊C8.8C2, C22⋊C4.3C4, C4.50(C4○D4), C23.10(C2×C4), (C2×C8).48C22, (C2×C4).152C23, C42⋊C2.8C2, (C22×C4).40C22, C22.46(C22×C4), C2.12(C42⋊C2), (C2×C4).28(C2×C4), SmallGroup(64,114)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.7C22
G = < a,b,c,d | a4=b4=d2=1, c2=b, ab=ba, cac-1=a-1b2, dad=ab2, bc=cb, bd=db, dcd=a2b2c >
Character table of C42.7C22
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | |
size | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -i | i | i | i | -i | -i | -i | i | -i | i | i | -i | linear of order 4 |
ρ10 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | i | -i | -i | -i | i | i | i | -i | i | -i | -i | i | linear of order 4 |
ρ11 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -i | i | i | i | -i | -i | -i | i | i | -i | -i | i | linear of order 4 |
ρ12 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | i | -i | -i | -i | i | i | i | -i | -i | i | i | -i | linear of order 4 |
ρ13 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -i | -i | i | i | i | i | -i | -i | i | i | -i | -i | linear of order 4 |
ρ14 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | i | i | -i | -i | -i | -i | i | i | -i | -i | i | i | linear of order 4 |
ρ15 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -i | -i | i | i | i | i | -i | -i | -i | -i | i | i | linear of order 4 |
ρ16 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | i | i | -i | -i | -i | -i | i | i | i | i | -i | -i | linear of order 4 |
ρ17 | 2 | -2 | -2 | 2 | 0 | -2 | -2 | 2 | 2 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 2 | 2 | -2 | -2 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 2 | -2 | -2 | 2 | 0 | -2 | -2 | 2 | 2 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ20 | 2 | -2 | -2 | 2 | 0 | 2 | 2 | -2 | -2 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ8 | 0 | 0 | 2ζ83 | 2ζ87 | 0 | 2ζ85 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ85 | 0 | 2ζ87 | 2ζ83 | 0 | 0 | 2ζ8 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
ρ23 | 2 | 2 | -2 | -2 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ83 | 0 | 2ζ8 | 2ζ85 | 0 | 0 | 2ζ87 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
ρ24 | 2 | -2 | 2 | -2 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ83 | 0 | 0 | 2ζ8 | 2ζ85 | 0 | 2ζ87 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
ρ25 | 2 | 2 | -2 | -2 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ8 | 0 | 2ζ83 | 2ζ87 | 0 | 0 | 2ζ85 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
ρ26 | 2 | -2 | 2 | -2 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ87 | 0 | 0 | 2ζ85 | 2ζ8 | 0 | 2ζ83 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
ρ27 | 2 | 2 | -2 | -2 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ87 | 0 | 2ζ85 | 2ζ8 | 0 | 0 | 2ζ83 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
ρ28 | 2 | -2 | 2 | -2 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ85 | 0 | 0 | 2ζ87 | 2ζ83 | 0 | 2ζ8 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
(1 19 27 12)(2 9 28 24)(3 21 29 14)(4 11 30 18)(5 23 31 16)(6 13 32 20)(7 17 25 10)(8 15 26 22)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 32)(4 26)(6 28)(8 30)(9 24)(10 14)(11 18)(12 16)(13 20)(15 22)(17 21)(19 23)
G:=sub<Sym(32)| (1,19,27,12)(2,9,28,24)(3,21,29,14)(4,11,30,18)(5,23,31,16)(6,13,32,20)(7,17,25,10)(8,15,26,22), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,32)(4,26)(6,28)(8,30)(9,24)(10,14)(11,18)(12,16)(13,20)(15,22)(17,21)(19,23)>;
G:=Group( (1,19,27,12)(2,9,28,24)(3,21,29,14)(4,11,30,18)(5,23,31,16)(6,13,32,20)(7,17,25,10)(8,15,26,22), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,32)(4,26)(6,28)(8,30)(9,24)(10,14)(11,18)(12,16)(13,20)(15,22)(17,21)(19,23) );
G=PermutationGroup([[(1,19,27,12),(2,9,28,24),(3,21,29,14),(4,11,30,18),(5,23,31,16),(6,13,32,20),(7,17,25,10),(8,15,26,22)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,32),(4,26),(6,28),(8,30),(9,24),(10,14),(11,18),(12,16),(13,20),(15,22),(17,21),(19,23)]])
C42.7C22 is a maximal subgroup of
C42.259C23 C42.261C23 C42.262C23 C42.292C23 C42.293C23 C42.297C23 C42.298C23 C42.299C23 C42.305C23 C42.307C23 C42.310C23 C42.352C23 C42.353C23 C42.354C23 C42.355C23 C42.356C23 C42.357C23 C42.358C23 C42.359C23 C42.360C23 C42.361C23 C42.406C23 C42.407C23 C42.408C23 C42.409C23 C42.410C23 C42.411C23 C42.423C23 C42.424C23 C42.425C23 C42.426C23
C2p.(C8○D4): C42.260C23 C42.678C23 C42.291C23 C42.294C23 C42.696C23 C42.304C23 C42.308C23 C42.309C23 ...
C42.7C22 is a maximal quotient of
(C4×C8)⋊12C4 C24.53(C2×C4) C42⋊4C4.C2 C23.(C2×F5) C4⋊C4.7F5
C42.D2p: C42.379D4 C42.45Q8 C42.95D4 C42.23Q8 C42.243D6 C42.185D6 C42.31D6 C42.187D6 ...
(C2×C8).D2p: C4⋊C4⋊3C8 (C2×C8).Q8 C22⋊C4⋊4C8 C23.9M4(2) C24⋊C4⋊C2 C40⋊8C4⋊C2 C56⋊C4⋊C2 ...
Matrix representation of C42.7C22 ►in GL4(𝔽17) generated by
0 | 16 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 |
0 | 0 | 16 | 0 |
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 |
15 | 0 | 0 | 0 |
0 | 15 | 0 | 0 |
0 | 0 | 0 | 8 |
0 | 0 | 9 | 0 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 16 |
G:=sub<GL(4,GF(17))| [0,1,0,0,16,0,0,0,0,0,0,16,0,0,16,0],[4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[15,0,0,0,0,15,0,0,0,0,0,9,0,0,8,0],[1,0,0,0,0,16,0,0,0,0,1,0,0,0,0,16] >;
C42.7C22 in GAP, Magma, Sage, TeX
C_4^2._7C_2^2
% in TeX
G:=Group("C4^2.7C2^2");
// GroupNames label
G:=SmallGroup(64,114);
// by ID
G=gap.SmallGroup(64,114);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,332,50,88]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=d^2=1,c^2=b,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d=a*b^2,b*c=c*b,b*d=d*b,d*c*d=a^2*b^2*c>;
// generators/relations
Export
Subgroup lattice of C42.7C22 in TeX
Character table of C42.7C22 in TeX